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Abstract

This paper presents efficient second-order kinetic schemes on unstructured meshes for both compressible unsteady and
incompressible steady flows. For compressible unsteady flows, a time-dependent gas distribution function with a discontin-
uous particle velocity space at a cell interface is constructed and used for the evaluations of both numerical fluxes and conser-
vative flow variables. As a result, a compact scheme on the unstructured meshes is developed. For incompressible steady flows,
a continuous second-order gas-kinetic BGK type scheme is presented, for which the time-dependent gas distribution function
with a continuous particle velocity is used on unstructured meshes. The efficiency of the schemes lies in the fact that the slopes
of the flow variables inside each cell can be constructed using values of the flow variables within that cell only without involving
neighboring cells. Therefore, even with the stencil of a first-order scheme, a high resolution method is constructed. Numerical
examples are presented which are compared with the benchmark solutions and the experimental measurements.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Great progress has been achieved in the area of computational fluid dynamics (CFD) in the past decades.
The developments of advanced numerical algorithms have made the CFD a valuable and indispensable tool in
the analysis of highly complex flow problems. However, the construction of highly accurate and reliable
numerical methods is still under demand as the geometry and flow physics become more sophisticated.

In recent years, the development of Boltzmann-type schemes has attracted much attention. The success of such
schemes has appeared in a wide range of engineering applications, see for example, [13,14,8,15]. Among the Boltz-
mann-type schemes, the equilibrium-flux method (EFM) has been intensively studied [17]. EFM is a flux splitting
method and is also referred to as a kinetic flux vector splitting (KFVS) scheme [17]. In fact, the EFM and KFVS
schemes are identical. The KFVS scheme is composed of two steps. Firstly, the free transport equation or the col-
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lisionless Boltzmann equation is solved in the gas evolution stage for the flux evaluation. Then, the collision part is
implicitly implemented through the preparation of a new equilibrium state inside each cell at the beginning of next
time step. With the inclusion of Boltzmann collision model in the flux evaluation process, the gas-kinetic BGK
scheme has been proposed in [2,6,20]. The BGK scheme differs from the KFVS method mainly in the inclusion of
particle collisions in the gas evolution stage. Instead of solving the collisionless Boltzmann equation, the particle
transport in the BGK scheme is controlled by a real particle collision time, which is related to the physical dissi-
pative coefficients. In other words, instead of using the numerical time step as the particle collision time in the
KFVS scheme, the real physical collision is included in the BGK scheme, where the accurate Navier–Stokes solu-
tions have been obtained (cf. [21,22]). Since the gas evolution process is associated with a relaxation process, i.e.
from a non-equilibrium state to an equilibrium one, the entropy condition is always satisfied by the BGK scheme.
In the smooth region, where the physical structure can be well resolved by the numerical cell size, the BGK scheme
gives an accurate compressible Navier–Stokes solution. In the discontinuity region, a delicate dissipative mech-
anism in the BGK scheme generates a stable and crisp shock transition.

The gas-kinetic BGK scheme is a finite volume method which originally targets on the simulation of compress-
ible flows. In order to further extend its applicability, in this paper we construct a new efficient second-order
kinetic schemes for compressible unsteady and incompressible steady flows on unstructured meshes. Here, a sec-
ond-order method means that the reconstructed equilibrium and non-equilibrium states have piecewise linear
distributions in space. At the same time, as analyzed in [16], in the smooth region the time accuracy of the scheme
is equivalent to the Lax–Wendroff method for the Navier–Stokes equations. For the sake of clear presentation, in
this paper we will restrict the presentation of our schemes only in two-dimensional space. However, the schemes
of this paper can be straightforwardly extended to the three-dimensional case without any essential difficulty.

The basic idea in the construction of our efficient kinetic schemes lies in the fact that from a time accurate
gas distribution function at a cell interface, we can not only calculate the numerical fluxes, but also evaluate
accurate flow variables. Therefore, based on the cell averaged conservative flow variables and their cell inter-
face values, we can construct or update the slopes within a cell solely. In other words, even with a stencil of a
first-order scheme, a high resolution scheme can be still constructed. In this way, we avoid using the flow vari-
ables from neighboring cells in the construction of limited slopes. This is different from a traditional finite vol-
ume method, especially for a high-order scheme (see [11,14] for example). So, using a compact stencil we are
able to construct an efficient gas-kinetic BGK scheme, which is computationally cheap and easy in coding. As
is well-known, sometimes it is very difficult to choose a suitable stencil to construct all slopes on unstructured
meshes. For incompressible steady flow simulation, the numerical dissipation introduced in the gas-kinetic
BGK scheme through discontinuities of flow variables at a cell interface needs to be eliminated. In this case,
a continuous gas distribution function corresponding to an isothermal flow is constructed for both flux eval-
uation and flow variables update at a cell interface. This is similar to the Lattice Boltzmann approach, where
the solution in the isothermal low Mach number limit is obtained.

This paper is organized as follows. In Section 2, the gas-kinetic BGK model for compressible and incompressible
isothermal flows is presented. Section 3 is devoted to the construction of the efficient second-order kinetic schemes
on unstructured meshes. Section 4 present numerical examples which demonstrate the efficiency and accuracy of the
schemes in the simulation of compressible and incompressible flows. The last section is the conclusion.

2. BGK model for compressible and incompressible isothermal flows

The BGK model in two space dimensions can be written as
ft þ ufx þ vfy ¼
g � f

s
; ð2:1Þ
where f is the gas distribution function and g is the equilibrium state approached by f, ðu; vÞ is the particle
velocity. Both f and g are functions of x; y; t; u; v and the internal variable n. The particle collision time s is
related to the viscosity coefficient.

Generally, the equilibrium state is a Maxwellian distribution
g ¼ q
k
p

� �Kþ2
2

e�kððu�uÞ2þðv�vÞ2þn2Þ; ð2:2Þ
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where q is the macroscopic density, k is equal to m=ð2kT Þ, m is the molecular mass, k is the Boltzmann con-
stant, and T is the temperature. The total number of degree of freedom K in n is equal to ð4� 2cÞ=ðc� 1Þ, and
n2 denotes n2 ¼ n2

1 þ n2
2 þ � � � þ n2

K .
The relation between the mass q, the momentum ðqU ; qV ; Þ, the energy E and the distribution function f is

given by
ðq; qU ; qV ;EÞT ¼
Z

Wf dN;
where
W ¼ ðw1;w2;w3;w4Þ
T ¼ 1; u; v;

1

2
ðu2 þ v2 þ n2Þ

� �T

;

and dN ¼ dudv dn is the volume element in the phase space.
Since the mass, momentum, and energy are conservative during particle collisions, f and g satisfy the con-

servation constraints
Z
ðg � f Þwa dN ¼ 0; a ¼ 1; 2; 3; 4;
at any point in space and time.
For a local equilibrium state with f ¼ g, the Euler equations can be obtained by taking the moments of W

to Eq. (2.1), and the corresponding Euler equations are
q

qU

qV

E

0
BBB@

1
CCCA

t

þ

qU

qU 2 þ p

qUV

ðE þ pÞU

0
BBB@

1
CCCA

x

þ

qV

qUV

qV 2 þ p

ðE þ pÞV

0
BBB@

1
CCCA

y

¼ 0;
where E ¼ 1
2
qðU 2 þ V 2 þ ðK þ 2Þ=ð2kÞÞ is the total energy and p ¼ q=ð2kÞ is the pressure.

On the other hand, to the first order of s, the Chapman–Enskog expansion gives f ¼ g � sðgt þ ugx þ vgyÞ
[21]. Taking moments W to the BGK Eq. (2.1) with this f, we get
Z

ðgt þ ugx þ vgyÞWdN ¼ s
Z
ðgtt þ 2ugxt þ u2gxx þ 2vgyt þ 2uvgxy þ v2gyyÞWdN;
from which the compressible Navier–Stokes equations with dynamic viscous coefficient l ¼ sp can be
obtained
q
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þ
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s3y

0
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; ð2:3Þ
where
s1x ¼ sp 2 oU
ox � 2

Kþ2
oU
ox þ oV

oy

h i
;

s2x ¼ sp oV
ox þ oV

oy

h i
;

s3x ¼ sp 2U oU
ox þ V oV

ox þ oU
oy

� �
� 2U

Kþ2
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� �
þ Kþ4
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s1y ¼ sp 2 oU
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h i
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In order to accurately approximate the incompressible flow limit, the isothermal model is usually used in
many pseudo-compressible codes, such as in the Lattice Boltzmann method (see, e.g. [4]). For an isothermal
flow, k in the equilibrium state (2.2) becomes a constant. In order to closely approach the incompressible limit,
which is equivalent to the increasing of the fluid sound speed, the largest value of c has to be used, which is
c ¼ 2. Therefore, for the isothermal incompressible flow, the equilibrium state in the BGK model can be
approximated as
g ¼ q
k
p

� �
e�kððu�UÞ2þðv�V Þ2Þ; ð2:4Þ
where
k ¼ 1

2h
; and h ¼ kT

m
;

and both T and h are constants.
The relation between the mass q, the momentum ðqU ; qV Þ and the distribution function in the isothermal

flow case is given by
ðq; qU ; qV ÞT ¼
Z

Uf dN;
where
U ¼ ðw1;w2;w3Þ
T ¼ ð1; u; vÞT;
and dN ¼ dudv is the volume element in the phase space.
Since the mass and momentum are conservative during the particle collisions, f and g should satisfy the

conservation constraints
Z
ðg � f Þwa dN ¼ 0; a ¼ 1; 2; 3;
at any point in space and time.
Based on the Chapman–Enskog expansion, a distribution function
f ¼ g � sðgt þ ugx þ vgyÞ � g þ f ð1Þ
is used to derive the isothermal Navier–Stokes equations. Taking moments U to Eq. (2.1) with the above f

leads to
Z
waðft þ ufx þ vfyÞdN ¼ 0; a ¼ 1; 2; 3;
and the corresponding equations are
o

ot

q

qu

� �
þ div

qu

qu� uþ qhI

� �
¼

0

�divP

� �
; ð2:5Þ
where I is the unit matrix, and
u ¼ ðU ; V Þ; P ¼ fPijg; p ¼ q
2k
;

Pij ¼
Z

f ð1Þninj dudv ¼ �sqhðoiU j þ ojU i � okU kÞ; ðn1; n2Þ � ðu; vÞ:
In the incompressible limit, i.e. q � constant, the kinematic viscosity in P becomes m ¼ sh.

3. Efficient second-order kinetic schemes on unstructured meshes

In this section, we present new second-order finite volume gas-kinetic schemes on unstructured meshes for
compressible and incompressible isothermal flows. The general solution f of (2.1) at any point~x ¼ ðx; yÞ and
time t is given by



Fig. 1.

G. Ni et al. / Journal of Computational Physics 227 (2008) 3015–3031 3019
f ðx; y; t; u; vÞ ¼ 1

s

Z t

0

gðx0; y0; t0; u; vÞe�ðt�t0Þ=s dt0 þ e�t=sf0ðx� ut; y � vtÞ; ð3:1Þ
where x0 ¼ x� uðt � t0Þ and y0 ¼ y � vðt � t0Þ.
Let Xj denote a mesh cell with edges ek. The cell averaged conservative variables at the nth time level on the

cell Xj are denoted for a compressible flow by
wn
j ¼ ðqn

j ; q
n
j Un

j ; q
n
j V n

j ;E
n
j Þ
and for an incompressible isothermal flow by
wn
j ¼ ðqn

j ; q
n
j Un

j ; q
n
j V n

j Þ;
respectively. We also denote by
dwn
j;jþ1=2; dwn

j;j�1=2; and dwn
j;j�3=2
the directional derivative at the nth time level along the normal direction of a cell interface between the cells j

and j + 1, the cells j and j � 1, and the cells j and j � 2, respectively (see Fig. 1).
Taking moments to the BGK Eq. (2.1) on the cell Xj, we get
Z

Xj

Z
waðft þ ufx þ vfyÞdNdX ¼ 0;
where dX ¼ dxdy, or equivalently,
d

dt

Z
Xj

Z
waf dNdX þ

Z
Xj

Z
ðufx þ vfyÞdNdX ¼ 0:
The above equation can be written as
d

dt

Z
Xj

Z
waf dNdX þ

X
ek2oXj

Z
waf~u � ndNdS ¼ 0; ð3:2Þ
where~u ¼ ðu; vÞT, n denotes the external unit normal vector of the corresponding edge and ek is the edge of the
cell Xj. We write (3.2) in the form of a conservative scheme,
d

dt

Z
Xj

Z
waf dNdX þ

X
ek2oXj

Fwa;ek ðtÞjekj ¼ 0; ð3:3Þ
where jekj is the measure of ek and Fwa;ek is the numerical flux across the cell edge ek. The update of the cor-
responding macroscopic flow variables inside each control volume reads
wnþ1
j ¼ wn

j �
Z tnþ1

tn

X
ek2oXj

Fw;ek ðtÞjekj=jXjj; ð3:4Þ
• j+1

j+1/2 

j-3/2 

• j-2 

• j-1 

• j

j-1/2 

Slope update scheme for discontinuous kinetic scheme, where dots are centroid of triangular cells, and circles are interface points.
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where jXjj is the measure of Xj. At the same time, the flow variables at the center of the edge can be evaluated
as
wnþ1
j;l ¼

Z
waf ðxj;l; t; u; v; nÞdN;
where l ¼ jþ 1=2; j� 1=2; and j� 3=2. Thus, our numerical algorithm can be summarized as follows:
Given ðwn

j ; dwn
j;jþ1=2; dwn

j;j�1=2; dwn
j;j�3=2Þ where ðdwn

j;jþ1=2; dwn
j;j�1=2; dwn

j;j�3=2Þ ¼ 0 when n = 0, find ðwnþ1
j ;

dwnþ1
j;jþ1=2; dwnþ1

j;j�1=2; dwnþ1
j;j�3=2Þ at the ðnþ 1Þth time level, where dwnþ1 is constructed from the cell averaged

and cell interface w.

From (3.4) we see that to obtain wnþ1
j , it suffices to construct the numerical flux Fw;ek . In the next section,

based on the BGK model and with the help of the given ðwn
j ; dwn

j;jþ1=2;dwn
j;j�1=2; dwn

j;j�3=2Þ, we will show the way
to construct Fw;ek .

3.1. An efficient second-order BGK solver for compressible flows

The numerical flux Fw;ek is obtained based on the construction of an efficient second-order BGK solver
along the normal direction of the edge ek. We begin with rewriting (3.4) in componentwise:
qnþ1
j ¼ qn

j �
R tnþ1

tn

P
ek2oXj

F q;ek ðtÞjekj=jXjj;

ðqUÞnþ1
j ¼ ðqUÞnj �

R tnþ1

tn

P
ek2oXj

F qU ;ek ðtÞjekj=jXjj;

ðqV Þnþ1
j ¼ ðqV Þnj �

R tnþ1

tn

P
ek2oXj

F qV ;ek ðtÞjekj=jXjj;

Enþ1 ¼ En �
R tnþ1

tn

P
ek2oXj

FE;ek ðtÞjekj=jXjj:

8>>>>>>>>>><
>>>>>>>>>>:

ð3:5Þ
The first stage is to reconstruct the initial data, which is subsequently needed in the following dynamical evo-
lution stage (the second stage) for the computation of gas distribution function at a cell interface.

By rotating the coordinates, we may assume the interface between the cell j and the cell j + 1 to be
Cjþ1=2 :¼ fðxjþ1=2; yÞ;�a < y < ag for some a > 0, see Fig. 1, and without loss of generality we may take
xjþ1=2 ¼ 0. For the compressible flow, the initial gas distribution f0 at time t = 0 has the form
f0 ¼
gl½1þ alx� sðaluþ AlÞ�; x 6 0;

gr½1þ arx� sðaruþ ArÞ�; x P 0:

(

The equilibrium state g around ðx ¼ 0; y ¼ 0; t ¼ 0Þ is assumed to be
g ¼ g0½1þ ð1� HðxÞÞalxþ HðxÞarx� þ At;
where HðxÞ is the Heaviside function, and g and g0 have the expression as that in (2.2). The coefficients
al;r; al;r;Al;r;A are related to the derivatives of the Maxwellian in space and time, and assumed to have the fol-
lowing form obtained from a Taylor expansion of the Maxiwellian:
al;r ¼ al;r
1 þ al;r

2 uþ al;r
3 vþ 1

2
al;r

4 ðu2 þ v2 þ n2Þ;

al;r ¼ al;r
1 þ al;r

2 uþ al;r
3 vþ 1

2
al;r

4 ðu2 þ v2 þ n2Þ;

Al;r ¼ Al;r
1 þ Al;r

2 uþ Al;r
3 vþ 1

2
Al;r

4 ðu2 þ v2 þ n2Þ;

A ¼ A1 þ A2uþ A3vþ 1

2
A4ðu2 þ v2 þ n2Þ;
where al;r
j ; a

l;r
j ;A

l;r and Aj can be determined using the relation between the macroscopic variables and the gas
distribution function [20]. For example, the coefficients al

j can be obtained by the following identity:
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Z 1

u

v
1
2
ðu2 þ v2 þ n2Þ

0
BBB@

1
CCCA a1 þ a2uþ a3vþ a4

2
ðu2 þ v2 þ n2Þ

� �
g dN ¼

oq
on
oqu
on
oqv
on
oE
on

0
BBBB@

1
CCCCAð� dwn

j;jþ1=2Þ; ð3:6Þ
where o
on is the directional derivative along the normal direction of the cell interface between the cell j and the

cell j + 1. The coefficients Al
j can be determined by the compatibility condition
Z

ðaluþ AlÞWgl dN ¼ 0
and the coefficients A by the conservative constrain condition over a time step
Z Dt

0

Z
ðg � f ÞWdt dN ¼ 0:
Inserting g and f0 into the solution (3.1) and recalling the definition of HðxÞ, we obtain the gas distribution
function f at the cell interface Cjþ1=2,
f ðxjþ1=2; t; u; v; nÞ ¼ ð1� e�t=sÞg0 þ ½sð�1þ e�t=sÞ þ te�t=s�½alHðuÞ þ arð1� HðuÞÞ�ug0

þ s
t
s
� 1þ e�t=s

� �
Ag0 þ e�t=sð1� utalÞHðuÞgl þ e�t=sð1� utarÞð1� HðuÞÞgr

þ e�t=sð�sAlHðuÞgl � sArð1� HðuÞÞgrÞ;
from which the flux across the cell interface Cjþ1=2 is given by
F q;ek

F q ~U ;ek

F q~V ;ek

FE;ek

0
BBB@

1
CCCA ¼

Z
u

1

u

v
1
2
ðu2 þ v2 þ n2Þ

0
BBB@

1
CCCAf ðxjþ1=2; 0; t; u; v; nÞdN;
where
~U ¼ U cos /þ V sin /; ~V ¼ �U sin /þ V cos /;
and / is the angle between the normal direction and x-axis. So, the fluxes across the interface between the cell j

and the cell j + 1 (cf. Fig. 1) for the update of the conservative variables can be written as
F q;ek

F qU ;ek

F qV ;ek

FE;ek

0
BBB@

1
CCCA ¼

F q;ek

F q ~U ;ek
cos /� F q~V ;ek

sin /

F q ~U ;ek
sin /þ F q~V ;ek

cos /

FE;ek

0
BBB@

1
CCCA:
Therefore, the numerical flux Fw;ek can be used to get wnþ1
j immediately by (3.4) (i.e. (3.5)).

What remains to finish is the description of our algorithm in the construction of the slopes dwnþ1
j;jþ1=2,

dwnþ1
j;j�1=2, dwnþ1

j;j�3=2 of wj at the cell interfaces at the ðnþ 1Þth time level. We should point out here that
in the construction of our scheme, the most important is that one can extract more information (e.g.
the value of the conservative variables at the points ~xj�3=2;~xj�1=2;~xjþ1=2 on the cell boundary) from the time
accurate gas distribution function f at the cell interface (see Fig. 1), from which we can therefore evaluate
not only the fluxes but also the conservative flow variables there at the ðnþ 1Þth time level. This avoid
using the values of the conservative variables from the neighboring cells in the construction of the slopes
of wnþ1

j , and therefore, the scheme is computationally efficient. As is well-known, it is very difficult to
choose a suitable stencil to construct slopes of wnþ1

j on an unstructured mesh, especially for high-order
methods.
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Hence for the cell j, at time step n + 1, we have both the updated cell averaged value wnþ1
j and the three

values wnþ1
jþ1=2;w

nþ1
j�1=2;w

nþ1
j�3=2 at three interface points ~xj�3=2;~xj�1=2;~xjþ1=2. Denote the value of the conservative

variable at the cell interface between the cell j and the cell j + 1 by
wnþ1
jþ1=2 ¼ ðqnþ1

jþ1=2; qU nþ1
jþ1=2;qV nþ1

jþ1=2;E
nþ1
jþ1=2Þ:
Then, we can obtain wnþ1
jþ1=2 by integrating the time-dependent gas distribution function as follows:
wnþ1
jþ1=2 ¼

Z 1

u

v
1
2
ðu2 þ v2 þ n2Þ

0
BBB@

1
CCCAf ðxjþ1=2; 0; tnþ1; u; v; nÞdN:
Consequently, the slope of the conservative variables wnþ1 at time step tnþ1 inside the cell j along the normal
direction of the cell interface between the cell j and the cell j + 1 can be obtained by taking appropriate dif-
ferences directly,
sþj;jþ1=2 ¼ ðwnþ1
jþ1=2 � wnþ1

j Þ=dnþ; s�j;jþ1=2 ¼ ðwnþ1
j � wnþ1Þ=dn�;
where wnþ1 is the average of wj�1=2 and wj�3=2, dnþ is the projection of dj;jþ1=2 in the normal direction, and dn�
is the projection of dj;j�1=2 in the normal direction, dj;jþ1=2 is the distance from the centroid of the cell j to the
interface point jþ 1=2, dj;j�1=2 is the distance from the centroid of the cell j to the center between the interface
points j� 1=2 and j� 3=2.

Having had the slopes s�j;jþ1=2, thus we can use van Leer’s limiter to obtain easily the slope dwnþ1
j;jþ1=2 of the con-

servative variables in the cell j along the normal direction of the cell interface between the cell j and the cell j + 1,
see Fig. 2. The slopes along the other two normal directions for the cell j can be obtained in the same manner.
Hence, we have constructed ðwnþ1

j ; dwnþ1
j;jþ1=2; dwnþ1

j;j�1=2; dwnþ1
j;j�3=2Þ and finished the description of our algorithm.

3.2. An efficient continuous kinetic scheme for incompressible flows

For incompressible isothermal flows, the system (3.4) becomes in componentwise
qnþ1 ¼ qn �
R tnþ1

tn

P
ek2oXj

F q;ek ðtÞjekj=jXjj;

ðquÞnþ1 ¼ ðquÞn �
R tnþ1

tn

P
ek2oXj

F qu;ek ðtÞjekj=jXjj;

ðqvÞnþ1 ¼ ðqvÞn �
R tnþ1

tn

P
ek2oXj

F qv;ek ðtÞjekj=jXjj:

8>>>>>><
>>>>>>:

ð3:7Þ
1
1/ 2

n
jw +
+

1n
jw +

, 1/ 2j js+
+

, 1/ 2j js−
+

1
1/ 2

n
jw
+
−

, 1 / 2j js +

Fig. 2. Slope sj;jþ1=2 for the cell j along the normal direction of the interface between the cells j and j + 1.
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From Section 2, we see that this is just the finite volume scheme of the system (2.5). So, we only need to con-
struct the flux F q;ek across an edge ek. We will present a second-order continuous gas-kinetic BGK type scheme
which is constructed using the time-dependent gas distribution function with continuous particle velocity in
the evaluation of the numerical flux across cell interfaces.

Denote the location of the interface, such as the point~xjþ1=2 in Fig. 1, as~x0 ¼ ð0; 0Þ. The initial gas distri-
bution f0 around the point~x0 at time t = 0 is assumed to have the form which is continuous in~x
f0ð~xÞ ¼ gð~x0; 0Þ þ f 1ð~x0Þ þ ð~x�~x0Þ � rg; ð3:8Þ
where the equilibrium state gð~x0; 0Þ has the same form as that in (2.4), and f1 is a non-equilibrium state. For the
isothermal Navier–Stokes equations, k ¼ 1=ð2hÞ is a constant. With a given Mach number M, k is determined
by
k ¼ M2=ð2u2
1Þ;
where u1 is the inflow velocity at infinity. Based on the Chapman–Enskog expansion [3], the non-equilibrium
state becomes
f 1 ¼ �sðgt þ ugx þ vgyÞ:
Recalling (2.4), and taking the temporal and spatial derivatives of the equilibrium distribution g, we have
gt ¼ ðA1 þ A2uþ A3vÞg;
gx ¼ ða1 þ a2uþ a3vÞg;
gy ¼ ðb1 þ b2uþ b3vÞg;

8><
>: ð3:9Þ
where~x ¼ ðx; yÞ, and
A1 ¼
qt

q
k
p
� 2kUU t � 2kVV t; A2 ¼ 2kUt; A3 ¼ 2kV t;

a1 ¼
qx

q
k
p
� 2kUU x � 2kVV x; a2 ¼ 2kUx; a3 ¼ 2kV x;

b1 ¼
qy

q
k
p
� 2kUU y � 2kVV y ; b2 ¼ 2kU y ; b3 ¼ 2kV y :
The equilibrium distribution around the point ð~x0; t0Þ can be expanded into
gð~x; tÞ ¼ gð~x; t0Þ þ ðx� x0Þ
og
ox
þ ðy � y0Þ

og
oy
þ ðt � t0Þ

og
ot

¼ gð~x; t0Þð1þ aðx� x0Þ þ bðy � y0Þ þ Aðt � t0ÞÞ: ð3:10Þ
Here the coefficients ai can be found by taking the moments as follows:
Z 1

u

v

0
B@

1
CAða1 þ a2uþ a3vÞg dN ¼

oq
ox

oðqUÞ
ox

oðqV Þ
ox

0
BB@

1
CCA; ð3:11Þ
where ðoq
ox ;

oðqUÞ
ox ; oðqV Þ

ox Þ is the projection in the x-direction of ðoq
on ;

oðqUÞ
on ; oðqV Þ

on Þ which is the slope of the conservative

variables in the cell j along the normal direction of a cell interface, and is given at the nth time level. The coef-
ficients bi are obtained in the same manner using the y-directional derivative of ðq; qU ; qV Þ obtained by pro-

jecting ðoq
on ;

oðqUÞ
on ; oðqV Þ

on Þ in the y-direction, while Ai are obtained from the compatibility condition:
Z Z 1

u

v

0
B@

1
CAf 1 du dv ¼ 0:
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Now, all (unknown) terms in f0 on the right-hand side of (3.8) and g on the right-hand side of (3.10) have been
determined. Then, substituting f0 and g into the integral solution (3.1), we get the gas distribution function
around ð~x0; 0Þ at the cell interface
f ðx;y; t;u;vÞ ¼ 1

s

Z t

0

ð1þ aðx� uðt� t0Þ� x0Þþ bðy� vðt� t0Þ� y0ÞþAt0Þge�ðt�t0Þ=s dt0

þ ½1þ aðx� ut0 � x0Þþ bðy� vt0 � y0Þ� sðauþ bvþAÞ�ge�t=s ¼ ½1� sðauþ bvþAÞþAt�g:
Therefore, the numerical flux across the edge ek is given by
F q;ek

F q ~U ;ek

F q~V ;ek

0
B@

1
CA ¼ Z u

1

u

v

0
B@

1
CAð1� sðauþ bvþ AÞ þ AtÞq0

k
p

� �
e�k½ðu� ~UÞ2þðv�~V Þ2� dN; ð3:12Þ
where
~U ¼ U cos /þ V sin /; ~V ¼ �U sin /þ V cos /;
and / is the angle between the normal direction of the edge ek and x-axis.
Integrating the flux (3.12) to the whole time step, we can obtain the total mass and momentum transport

across the cell edges by (3.4). The flow variables inside each control volume are subsequently updated, and
hence we have obtained wnþ1

j . Finally, the slopes ðoq
on ;

oðqUÞ
on ; oðqV Þ

on Þ along the normal direction of cell interfaces
at the ðnþ 1Þth time level are determined by interpolating directly the neighboring cell averaged values in
the same manner as described at the end of Section 3.1. The above procedure can be repeated in the next time
level. The description of our algorithm is complete.

4. Numerical examples

We now present six numerical examples, four for the compressible unsteady flow simulation, and two for
the incompressible steady flow simulation, to validate the schemes. In all cases, the numerical time step is
taken as
Dt ¼ CFL min
j

ffiffiffiffiffiffiffiffi
jXjj

q
=ðmax juj þ cÞ;
where CFL is the CFL number and c is the sound speed. In our numerical examples, CFL = 0.25–0.45 is used.
The collision time s is taken as
s ¼ �Dt þ jpl � prj
pl þ pr

Dt for the compressible case; and s ¼ 2k
Re

for the incompressible case;
where � is a parameter.
The convergence test is made for two two-dimensional unsteady flow examples, for which the numerical

results with different mesh sizes are presented.

Example 1. Sod’s shock problem.
This problem has been extensively studied (see, e.g. [10,12,20]). It is a one-dimensional shock tube problem

with two different initial constant states in the left and right part of the tube with unit length:
ðql ¼ 1; qlU l ¼ 0;El ¼ 2:5Þ; ðqr ¼ 0:125; qrUr ¼ 0;Er ¼ 0:5Þ; and c ¼ 1:4;
and the initial discontinuity is located at x ¼ 1=2. We present here the numerical results for the density distri-
butions with 200 grid points and � ¼ 0:54 using both the second-order scheme and the first-order scheme in
Fig. 3. We see that they are generally in good agreement with the corresponding numerical results in
[10,12,20], and the second-order scheme resolves shock and contact discontinuity wave better than that from
the first-order scheme.
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Fig. 3. Density distributions of the shock tube test from first and second-order schemes.
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Example 2. A Mach 3 wind tunnel with a forward step.
This problem was extensively studied by Woodward and Colella [19], and later by many others. The setup

of the problem is the following: A right going Mach 3 uniform flow enters a wind tunnel of one length unit
wide and three length units long, where a step with 0.2 unit high is located at 0.6 unit from the left-hand end of
the tunnel. Reflection boundary conditions are applied along the walls of the tunnel, and inflow and outflow
conditions are applied at the entrance and exit, respectively. Here we give two density contours for different
meshes with � = 0.4. The numerical result with 15,110 cells and 7759 nodes is shown in Fig. 4, while the
numerical result with 59,466 cells and 30,137 nodes is presented in Fig. 5. The corner of the step is the center of
a rarefaction fan and hence is a singular point of the flow. In our simulation, no special treatment was done at
this singular point. It is easy to see that the numerical results here are comparable to those in [19]. In order to
make the Mach stem above the low boundary shorter, special boundary treatment was done near the corner of
the step in [19].

Example 3. Double Mach reflection of a strong shock.
This problem has also been extensively studied by Woodward and Colella [19], and by many others. We use

exactly the same setup as in [19]. Namely, a Mach 10 shock initially makes a 60� angle with a reflecting wall.
The undisturbed air ahead of the shock has a density of 1.4 and a pressure of 1. Here we give two density
0 1 2 3
0

0.5

1

Fig. 4. Density contour of forward step problem on an unstructured mesh with 7759 nodes and 15,110 cells.
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Fig. 5. Density contour of forward step problem with 30,137 nodes and 59,466 cells.
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Fig. 6. Density contour of Mach reflection test on an unstructured mesh with 47,258 nodes and 93,510 cells.
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contours for different meshes with � = 0.4. The numerical result with 93,510 cells and 47,258 nodes is shown in
Fig. 6, while the numerical result with 194,665 cells and 96,137 nodes is given in Fig. 7. Obviously, the
numerical results here reproduce both in large scale and certain small scale those in [19], and those in the other
literatures (e.g. [20]).
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Example 4. Diffraction around a corner.
This problem was studied by Quirk in [18]. It is a strong shock of Mach number 5.09 diffraction around a

corner. It is well known that the original Godunov scheme, the Roe scheme without any entropy-fix and the
Osher scheme could yield a ‘‘shock’’ at the rarefaction corner (see [18]). Here, we show the numerical results of
two density contours with different meshes and � = 0.4. The results with 18,792 cells and 9586 nodes are given
in Fig. 8, while the result with 165,684 cells and 83,406 nodes in Fig. 9. There are no detections or entropy-fix
in our calculation. From Figs. 8 and 9 we see that the simulated results here reproduce the large-scale structure
of the corresponding numerical and experiment results in [1,9]. From Examples 2–4 we find that as the mesh is
refined, the numerical solutions are getting convergent.

Example 5. Cavity flow.
The laminar incompressible flow inside a square cavity with a moving top boundary is a well-defined test

for the code verification in spite of the singularities at four corners. For variable Reynolds numbers, highly
accurate solutions have been obtained by Ghia [7], where a finite difference scheme with stream vorticity
formulation was used for the solutions. In this test, the computational domain is [0, 1] · [0,1], the upper
boundary is moving with a velocity u0 ¼ 1:0, and the isothermal temperature takes a value to have an
2 0 4 0 6 0Density contour of shock diffraction test on a refined mesh with 83,406 nodes and 165,684 cells.



Fig. 10. Stream lines inside a cavity at Re = 1000 on an unstructured mesh with 12,106 nodes and 23,800 cells.
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Fig. 11. U velocity distribution along a center vertical line, where the solid line is the result from the current scheme and the triangles are
the benchmark solution from [7].
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equivalent Mach number 0.15 for the flow inside the cavity. Non-slip boundary conditions are used for the
other three cavity boundaries. The viscosity coefficient is determined by m ¼ u0L=Re, where L = 1 and the
Reynolds number has a value 1000. The computation with 12,106 nodes and 23,800 mesh cells is carried out,
and totally, 200,000 time steps are used in order to get a steady state solution. The computed stream line and
velocity are shown in Figs. 10–12, from which we find that our numerical results reproduce accurately Ghia’s
benchmark solution.

Example 6. Back step flow.
Laminar flow over a back-facing step in a two-dimensional channel is also a well-defined benchmark test

case. The associated flow separation and subsequent reattachment in this case have been recognized as
important phenomena in engineering problems. For example, the flow separation is undesirable in many cases,
which leads to the unwanted pressure drops and energy losses. The setup of back-step domain is 45 mm width,
250 mm length, and a channel with 15 mm width, where an unstructured mesh with 12,697 cells and 6565
nodes is generated. Non-slip boundary conditions on the upper and lower boundaries are used, where the
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Fig. 12. V velocity distribution along a center horizontal line, where the solid line is the result from the current scheme and the triangles
are the benchmark solution from [7].

0 100 200
0

50

100

Fig. 13. Pressure distribution inside a back-facing step channel at Re = 73.
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Fig. 14. Stream lines distributions inside the channel.
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Fig. 15. U velocity distributions at different locations of x = 0.0, 12.0, 30.0, 60.0, 90.0, and 120.0, where the circles are the experimental
results from [5].
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inflow and outflow conditions for the left and right entrances are imposed. A parabolic inflow fluid velocity is
implemented on the left boundary with a maximum velocity 0.72, and Reynolds number 73 is imposed in the
current simulation. The experimental measurements as well as our numerical results are shown in Figs. 13–15,
where the pressure, stream lines, and the flow velocities at different cross sections are presented. Obviously, the
numerical results here are in good agreement with the experiment by Denham [5].
5. Conclusion

In this paper, we present efficient kinetic schemes on unstructured meshes for compressible unsteady and
incompressible steady flow computations, respectively. For compressible flow, we use the time-dependent
gas distribution function to get both the fluxes and the flow variables at cell interfaces to construct a sec-
ond-order gas-kinetic BGK scheme. For an incompressible flow, the gas-kinetic BGK scheme is extended
to the simulation of isothermal incompressible flows on unstructured meshes, on which a continuous gas dis-
tribution function is used. The efficiency of the schemes is due to the implementation that the slopes of flow
variables inside each cell can be constructed using only the values inside that cell as well as those on the cell
interface. Subsequently, the method avoids using the values from neighboring cells. All these are solely rooted
in the special property of the gas-kinetic BGK formulation, where a time accurate gas distribution function at
a cell interface is constructed. Therefore, even with the stencil of a first-order scheme, a high resolution scheme
can be obtained. Even though only a second-order accuracy method is presented in this paper, the method-
ology in this paper can be naturally extended to even higher-order scheme, because for higher-order method
the gas distribution functions at more interface points can be evaluated and be used to obtain high-order
reconstruction inside each cell. Numerical examples for steady and unsteady flows are presented in this paper,
which demonstrate the efficiency and accuracy of the schemes.
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